Help me proving this please. Let $(V,\langle,\rangle)$ be a finite dimensional vector space. Let $T$ be a linear operator on V. Show that $\operatorname{Im}T=(\ker T^*)^\perp$
Asked
Active
Viewed 181 times
0

Bernard
- 175,478

Ivan Bravo
- 153
-
1See e.g. https://math.stackexchange.com/questions/1747559/image-of-adjoint-equals-orthogonal-complement-of-kernel – Minus One-Twelfth Jun 08 '20 at 22:30
1 Answers
0
Hints:
- you have a finite dimensional inner product vector space
- by definition, $\langle Tx,y\rangle=\langle x,T^*y\rangle$
- $U^\perp=\{x\in V\mid \forall y\in U : \langle x,y\rangle=0\}$, where $U$ is a subspace of $V$
- in a finite dimensional inner product space $V$, for every subspace $U$ of $V$ it holds $U^{\perp\perp}=U$
Because of the statements above, you need to prove that, for all $x\in\operatorname{Im}T$ and $y\in\operatorname{Ker}T^*$, then $\langle x,y\rangle=0$.
Now, supply the full argument.

egreg
- 238,574