My attemp:
using the induction principle :
if $n=1$ I have an identity $x\ge x$.I suppose the principle is true for $n$ and I want to prove it for $n+1$
$x^{n+1} = x^n \cdot x\ge [1+n(x-1)]\cdot x$ but how can I obtained $1+(n+1)(x-1)$?
My attemp:
using the induction principle :
if $n=1$ I have an identity $x\ge x$.I suppose the principle is true for $n$ and I want to prove it for $n+1$
$x^{n+1} = x^n \cdot x\ge [1+n(x-1)]\cdot x$ but how can I obtained $1+(n+1)(x-1)$?
Here is a one liner,
$(x^n-1)=(x-1)(x^{n-1}+x^{n-2}+\cdots+1)\geq (x-1) \underbrace{(1+\cdots +1)}_\text{n of them}=n(x-1)$
Note that, $(x-1)^2\geq 0\implies x^2-x\geq x-1\implies nx^2-nx\geq nx-n$. Hence,
$$x\big[1+n(x-1)\big]=x+nx(x-1)=x+nx^2-nx\geq nx-n+x$$$$= 1+nx-n+x-1=1+(n+1)(x-1).$$
Binomial expansion
$x \ge 1$;
$x^n=(1+(x-1))^n=$
$1+n(x-1)+$
$\displaystyle{\sum_{k=2}^n}\binom{n}{k}1^{n-k}(x-1)^{k} \ge$
$1+n(x-1).$