1

My attemp:

using the induction principle :

if $n=1$ I have an identity $x\ge x$.I suppose the principle is true for $n$ and I want to prove it for $n+1$

$x^{n+1} = x^n \cdot x\ge [1+n(x-1)]\cdot x$ but how can I obtained $1+(n+1)(x-1)$?

amWhy
  • 209,954
user495707
  • 19
  • 6

4 Answers4

4

Here is a one liner,

$(x^n-1)=(x-1)(x^{n-1}+x^{n-2}+\cdots+1)\geq (x-1) \underbrace{(1+\cdots +1)}_\text{n of them}=n(x-1)$

1

Note that $x+nx(x-1)-1-(n+1)(x-1)=x-1+(x-1)(nx-n-1)=n(x-1)^2\ge0$.

J.G.
  • 115,835
1

Note that, $(x-1)^2\geq 0\implies x^2-x\geq x-1\implies nx^2-nx\geq nx-n$. Hence,

$$x\big[1+n(x-1)\big]=x+nx(x-1)=x+nx^2-nx\geq nx-n+x$$$$= 1+nx-n+x-1=1+(n+1)(x-1).$$

Sumanta
  • 9,534
1

Binomial expansion

$x \ge 1$;

$x^n=(1+(x-1))^n=$

$1+n(x-1)+$

$\displaystyle{\sum_{k=2}^n}\binom{n}{k}1^{n-k}(x-1)^{k} \ge$

$1+n(x-1).$

Peter Szilas
  • 20,344
  • 2
  • 17
  • 28