Find derivative of $y=\arcsin(2x \sqrt{1-x^2}) $ in domain $\frac{-1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$
If you put $x=\sin\theta$ then
$$ y= \arcsin(2sin(\theta) \sqrt{1- sin^2 ( \theta)})$$ $$y= \arcsin( sin2\theta)$$ $$y= 2\theta$$
$$y = 2 \arcsin(x)$$
But, if you put $x=\cos\theta$ then , again,
$$y=2\theta$$
But, resubstituting
$$ y= 2 \arccos(x)$$
But derivatives of both are different.
Now where's the mistake? Is it something related to the original domain I took?