Find all vector spaces $X$ such that for any two norms $\|\cdot\|_{a},\|\cdot\|_{b}$ there exist positive constant $ C$ such that for all $x \in \mathbb{V}$ we have $\|x\|_{a} =C\|x\|_{b}$.
Definition. Let $\mathrm{V}$ be a vector space over the real or complex numbers. Let $\|\cdot\|_{a},\|\cdot\|_{b}$ be norms. We say that $\|\cdot\|_{a},\|\cdot\|_{b}$ are equivalent if there exist positive constants $c, C$ such that for all $x \in \mathbb{V},$
$$c\|x\|_{a} \leq\|x\|_{b} \leq C\|x\|_{a}$$
I think this is true for every $1$-dimensional vector space.