Here is an elaboration of Brian's hint.
Note that $\gcd(a,a+b)=\gcd(a,b)$. See Why $\gcd(qb+r,b)=\gcd(b,r)$?
Also,
$$
\binom{a+b}{b}=\frac{(a+b)!}{a!b!} = \frac{a+b}{a}\cdot\frac{(a+b-1)!}{(a-1)!b!}
=\frac{a+b}{a}\cdot\binom{a+b-1}{a-1}
$$So
$$
a\binom{a+b}{b} = (a+b)\binom{a+b-1}{a-1}\;.
$$
It follows that $r\mid pq$, where
$$
\quad r =a+b,\quad p = a,\quad q=\binom{a+b}{b}
$$
Now you can apply Bézout's identity to get $xp+yr = 1$. Multiplying $q$ on both sides as in the proof of Euclid's lemma to conclude that we must have $r\mid q$.