0

How to compute $5^{64} \pmod{193}$?

My idea was:

$5^{64} = (5^4)^{16} \equiv 625^{16} \equiv 46^{16}\pmod{193}$.

Now I don't understand why it's $46^{16} \equiv (-7)^8 \equiv 49^4 \equiv 85^2 \equiv 84 \pmod{193}$.

How to get it here and how can the power be reduced?

Bernard
  • 175,478
Tartulop
  • 543
  • 2
  • 8

1 Answers1

1

first we compute $5^8\,(mod193)$ az you computed: $$5^4\equiv46$$ therefore we have:$$5^8\equiv(-7)$$ $$5^{64}\equiv{(5^8)}^8\equiv{(-7)}^8\equiv7^8\equiv84\,(mod193)$$

Mojbn
  • 356