My friend asked the following question related to matrices:
Assume A is
$$ \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ \end{pmatrix} $$
and B is
$$ \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \end{pmatrix} $$
AB = BA =$$ \begin{pmatrix} \frac{3}{8} & \frac{1}{4} & \frac{3}{8} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{8} & \frac{3}{8} \\ \end{pmatrix} $$
Why is this true? From the knowledge that I have, $A, B$, and the product are not identity matrices. $A=B^{n}$ is not true.