For $n\ge1$, by the Faa di Bruno formula and some properties of the partial Bell polynomials $B_{n,k}$, we obtain
\begin{align*}
\biggl(\arctan\frac{1-t}{2+t}\biggr)^{(n)}
&=-3\biggl(\frac{1}{2t^2+2t+5}\biggr)^{(n-1)}\\
&=-3\sum_{k=0}^{n-1} \frac{(-1)^kk!}{(2t^2+2t+5)^{k+1}} B_{n-1,k}\bigl(4t+2,4,0,\dotsc,0\bigr)\\
&=-3\sum_{k=0}^{n-1} \frac{(-1)^kk!}{(2t^2+2t+5)^{k+1}} 4^k B_{n-1,k}\biggl(t+\frac12,1,0,\dotsc,0\biggr)\\
&\to-3\sum_{k=0}^{n-1} \frac{(-1)^kk!}{5^{k+1}} 4^k B_{n-1,k}\biggl(\frac12,1,0,\dotsc,0\biggr), \quad t\to0\\
&=-3\sum_{k=0}^{n-1} \frac{(-1)^kk!}{5^{k+1}} 4^k \frac{1}{2^{n-k-1}}\frac{(n-1)!}{k!}\binom{k}{n-k-1}\frac1{2^{2k-n+1}}\\
&=-3(n-1)!\sum_{k=0}^{n-1} (-1)^k\frac{2^k}{5^{k+1}} \binom{k}{n-k-1},
\end{align*}
where we used
\begin{equation}\label{Bell-x-1-0-eq}
B_{n,k}(x,1,0,\dotsc,0)
=\frac{1}{2^{n-k}}\frac{n!}{k!}\binom{k}{n-k}x^{2k-n}.
\end{equation}
Consequently, we arrive at
\begin{equation*}
\arctan\frac{1-t}{2+t}
=\arctan\frac12+\frac35\sum_{n=0}^\infty\Biggl[\sum_{k=0}^{n-1} (-1)^{k+1} \biggl(\frac{2}{5}\biggr)^k \binom{k}{n-k-1}\Biggr]\frac{t^n}{n}
\end{equation*}
and
\begin{equation*}
\arctan\frac{1-x^2}{2+x^2}
=\arctan\frac12+\frac35\sum_{n=0}^\infty\Biggl[\sum_{k=0}^{n-1} (-1)^{k+1} \biggl(\frac{2}{5}\biggr)^k \binom{k}{n-k-1}\Biggr]\frac{x^{2n}}{n}.
\end{equation*}
References
- F. Qi and B.-N. Guo, Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials, Mediterr. J. Math. 14 (2017), no. 3, Article 140, 14 pages; available online at https://doi.org/10.1007/s00009-017-0939-1.
- F. Qi, D.-W. Niu, D. Lim, and Y.-H. Yao, Special values of the Bell polynomials of the second kind for some sequences and functions, J. Math. Anal. Appl. 491 (2020), no. 2, Article 124382, 31 pages; available online at https://doi.org/10.1016/j.jmaa.2020.124382.