In elementary probability,
$E(Y \mid X =x)$ is defined as expectation of $Y$ w.r.t. the p.m. $P(A \mid X =x): = \frac{P(A \cap \{X=x \})}{P( X=x)}$ when $P( X=x) \neq 0$.
when $P(X =x) =0$ , define $$P(A\mid X =x): = \lim_{\epsilon \rightarrow 0} \frac{P(A \cap \{|X-x|< \epsilon\} )}{P(|X-x|< \epsilon)}$$ and $$E(Y \mid X =x): = \lim_{\epsilon \rightarrow 0} \frac{E(Y \times 1_{\{|X-x|< \epsilon\}})}{P(|X-x|< \epsilon)}.$$
If define $f(x):=P(A \mid X =x)$ and $h(x):=E(Y \mid X =x)$, then $f(X)$ and $h(X)$ are both random variables $\Omega \rightarrow \mathbb{R}$.
In probability theory, $E(Y \mid X )$ and $P(A \mid X )$ are both random variables $\Omega \rightarrow \mathbb{R}$.
I was wondering
if $h(X)$ and $E(Y \mid X )$ are the same a.s.?
Similarly, if $f(X)$ and $P(A \mid X )$ are the same a.s.? Is $f(X=x)$ the so called transition probability distribution?
Thanks and regards!