I found this limit calculation problem in a book. For a real number $p\geq 0$ we have $$\lim_{n\rightarrow \infty}\frac{\left (1^{1^p}2^{2^p}\dots n^{n^p}\right )^{\frac{1}{n^{p+1}}}}{n^{\frac{1}{p+1}}}=e^{-\frac{1}{(p+1)^2}}$$
After taking logarithm this is equivalent to showing $$\sum_{k=1}^n \frac{1}{n}{\left ( \frac{k}{n}\right )}^p \log k-\frac{1}{p+1}\log n\rightarrow -\frac{1}{(p+1)^2}$$as $n\rightarrow \infty$
Now we know $$\sum_{k=1}^n \frac{1}{n}{\left ( \frac{k}{n}\right )}^p \log \left (\frac{k}{n} \right )\rightarrow \int_0^1x^p\log x \ dx=-\frac{1}{(p+1)^2}$$
To balance we have to evaluate the limit of $$\left (\sum_{k=1}^n \frac{1}{n}{\left ( \frac{k}{n}\right )}^p -\frac{1}{p+1}\right ) \log n$$ Now observe the sum in brackets is the error of the Riemann sum associated to the Riemann Integral $\displaystyle{\int_0^1x^p dx}$
In the interval $\left [\frac{k}{n},\frac{k+1}{n} \right ]$ if we apply MVT to the function $x^p$ we get $$\left |x^p-\left (\frac{k}{n} \right )^p \right |\leq \left |\left (\frac{k+1}{n} \right )^p -\left (\frac{k}{n} \right )^p\right |=\frac{|p z_k^{p-1} |}{n}$$ for some $z_{k}\in \left [\frac{k}{n},\frac{k+1}{n} \right ] $
So we get $$\sup_{x\in \left [\frac{k}{n},\frac{k+1}{n} \right ]}\left |x^p-\left (\frac{k}{n} \right )^p \right |\leq \frac{p}{n}$$ if $p\geq 1$ Then we have $$\left | \sum_{k=1}^n \frac{1}{n}{\left ( \frac{k}{n}\right )}^p -\frac{1}{p+1}\right |=\left |\sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}}\left(x^p - \left ( \frac{k}{n}\right )^p \right )dx \right |\leq \frac{p}{n}$$ $$\implies \left (\sum_{k=1}^n \frac{1}{n}{\left ( \frac{k}{n}\right )}^p -\frac{1}{p+1}\right ) \log n\rightarrow 0$$ as $n\rightarrow \infty$ and we are done.
I am really having trouble with the $p<1$ case.
Some help will be very appreciated.