Recall
$$\int_0^1 x^{n-1}\ln(1-x)dx=-\frac{H_n}{n}\tag1$$
where if we replace $n$ by $2n$ then multiply both sides by $-\frac{2(-1)^n}{n}$ and sum up over $n$ we have
$$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{n^2}=-2\int_0^1 \frac{\ln(1-x)}{x}\sum_{n=1}^\infty\frac{(-x^2)^n}{n}dx=2\int_0^1\frac{\ln(1-x)\ln(1+x^2)}{x}dx$$
$$\overset{IBP}{=}-2\ln(2)\zeta(2)+4\int_0^1\frac{x\text{Li}_2(x)}{1+x^2}dx$$
$$=-2\ln(2)\zeta(2)+4\int_0^1\frac{x}{1+x^2}\left(-\int_0^1\frac{x\ln(y)}{1-yx}dy\right)dx$$
$$=-2\ln(2)\zeta(2)+4\int_0^1\ln(y)\left(-\int_0^1\frac{x^2}{(1+x^2)(1-yx)}dx\right)dy$$
$$=-2\ln(2)\zeta(2)+4\int_0^1\ln(y)\left(\frac{\pi}{4}\frac{1}{1+y^2}+\frac{\ln(2)}{2}\frac{y}{1+y^2}+\frac{\ln(1-y)}{y}-\frac{y\ln(1-y)}{1+y^2}\right)dy$$
$$=-2\ln(2)\zeta(2)+4\left(-\frac{\pi}{4}G-\frac{\ln(2)}{16}\zeta(2)+\zeta(3)-\int_0^1\frac{y\ln(y)\ln(1-y)}{1+y^2}\right)$$
$$=4\zeta(3)-\frac94\ln(2)\zeta(2)-\pi G-4\int_0^1\frac{y\ln(y)\ln(1-y)}{1+y^2}dy$$
Divide both sides by $4$
$$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{(2n)^2}=\zeta(3)-\frac9{16}\ln(2)\zeta(2)-\frac{\pi}4 G-\int_0^1\frac{y\ln(y)\ln(1-y)}{1+y^2}dy\tag2$$
For the latter integral, differentiate both sides of $(1)$ with respect to $n$ we have
$$\int_0^1 x^{n-1}\ln(x)\ln(1-x)dx=\frac{H_n}{n^2}+\frac{H_n^{(2)}}{n}-\frac{\zeta(2)}{n}$$
Replace $n$ by $2n$ then multiply both sides by $(-1)^n$ and consider the summation we have
$$\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{(2n)^2}+\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{2n}+\frac12\ln(2)\zeta(2)=\int_0^1 \frac{\ln(x)\ln(1-x)}{x}\sum_{n=1}^\infty (-x^2)^ndx$$
$$=-\int_0^1\frac{x\ln(x)\ln(1-x)}{1+x^2}dx\tag3$$
Solving $(2)$ and $(3)$ yields
$$\boxed{\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{2n}=\frac{\pi}{4}G+\frac1{16}\ln(2)\zeta(2)-\zeta(3)}$$
to get your sum, exploit the identity
$$-\ln(1-x)\text{Li}_2(x)=2\sum_{n=1}^\infty\frac{H_n}{n^2}x^n+\sum_{n=1}^\infty\frac{H_n^{(2)}}{n}x^n-3\sum_{n=1}^\infty\frac{x^n}{n^3}$$
Replace $x$ by $i$ then consider the real parts of the two sides we have
$$-\Re\{\ln(1-i)\text{Li}_2(i)\}=2\Re\sum_{n=1}^\infty\frac{H_n}{n^2}i^n+\Re\sum_{n=1}^\infty\frac{H_n^{(2)}}{n}i^n-3\Re\sum_{n=1}^\infty\frac{i^n}{n^3}$$
use the fact that $$\Re\sum_{n=1}^\infty i^n f(n)=\sum_{n=1}^\infty (-1)^n f(2n)$$
Thus,
$$-\Re\{\ln(1-i)\text{Li}_2(i)\}=2\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{(2n)^2}+\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{2n}-3\sum_{n=1}^\infty\frac{(-1)^n}{(2n)^3}$$
where $\Re\{\ln(1-i)\text{Li}_2(i)\}=\frac{\pi}{4}G-\frac1{16}\ln(2)\zeta(2)$ and $\sum_{n=1}^\infty\frac{(-1)^n}{n^3}=-\frac34\zeta(3)$
substituting these two results along with the result of $\sum_{n=1}^\infty\frac{(-1)^nH_{2n}^{(2)}}{2n}$ gives
$$\boxed{\sum_{n=1}^\infty\frac{(-1)^nH_{2n}}{(2n)^2}=\frac{23}{64}\zeta(3)-\frac{\pi}{4} G}$$