2

Related to New bound for Am-Gm of 2 variables we have :

Let $x\geq 5$ be a real number then we have : $$\sqrt{x}+x^{\frac{x}{x+1}}\geq \frac{x^2+1}{x+1}\Bigg(\frac{x^{\frac{x}{x+1}}}{x^{\frac{x^2}{x^2+1}}}+\frac{\sqrt{x}}{x^{\frac{x}{x+1}}}\Bigg)\geq x+1$$

For the LHS we have the following inequality for $x\geq 5$ :

$$\sqrt{x}+x^{\frac{x}{x+1}}- \frac{x^2+1}{x+1}\Bigg(\frac{x^{\frac{x}{x+1}}}{x^{\frac{x^2}{x^2+1}}}+\frac{\sqrt{x}}{x^{\frac{x}{x+1}}}\Bigg)< 1$$

So we compute the limit at infinity to get :

$$\lim_{x\to \infty}\sqrt{x}+x^{\frac{x}{x+1}}- \frac{x^2+1}{x+1}\Bigg(\frac{x^{\frac{x}{x+1}}}{x^{\frac{x^2}{x^2+1}}}+\frac{\sqrt{x}}{x^{\frac{x}{x+1}}}\Bigg)= 1$$

I can prove it using generalized Puiseux series at infinity and the Hospital rule we have :

$$x^{\frac{x}{x+1}}=x - \log(x) + \frac{\log(x) (\log(x) + 2)}{2 x} + O\Big(\frac{1}{x^2}\Big)$$

And

$$x^{\frac{x^2}{x^2+1}}=x - \frac{\log(x)}{x} + O\Big(\frac{1}{x^2}\Big)$$

And :

$$\frac{x^2+1}{x+1}=x - 1 + \frac{2}{x} - \frac{2}{x^2} + \frac{2}{x^3} + O\Big(\frac{1}{x^4}\Big)$$

But $$f(x)=\sqrt{x}+x^{\frac{x}{x+1}}$$ and $$g(x)= \frac{x^2+1}{x+1}\Bigg(\frac{x^{\frac{x}{x+1}}}{x^{\frac{x^2}{x^2+1}}}+\frac{\sqrt{x}}{x^{\frac{x}{x+1}}}\Bigg)$$

Are both strictly increasing $\forall x>5$ so we have prove it for a $q<x$ . Remains to prove that $q=5$.

Update :

Like this my reasoning is incomplete we need to prove that the functions $g(x)$ and $f(x)$ have no inflection point

End update

For the RHS .

It sufficient to prove for $x$ a large real number :

$$\sqrt{x}+x^{\frac{x}{x+1}}-1\geq x+1$$

I can prove it using derivatives and with the function :

$h(x)=\sqrt{x}+x^{\frac{x}{x+1}}-1-x+1$

So the real problem is when $x$ is relatively small .

My question :

How to solve it when $x$ is relatively small ?

Any helps is greatly appreciated.

Thanks a lot for all your contributions.

0 Answers0