Basic idea:
1. We get rid of $1$s except for the first row
2. We get rid of $1$s in the first row
3. We consider $(A)_{1,1}$ as the rest is known
So 1. we subtract the 1st row from every other row:
$$\begin{align*}
\left|\begin{array}{cccccc}
3 & 1 & 1 & 1 & & 1 \\
1 & 4 & 1 & 1 & \dots & 1 \\
1 & 1 & 5 & 1 & \cdots & 1 \\
1 & 1 & 1 & 6 & & 1 \\
& & & & \ddots & \vdots \\
1 & 1 & 1 & 1 & \cdots & n+1
\end{array}\right|
&=
\left|\begin{array}{cccccc}
3 & 1 & 1 & 1 & & 1 \\
-2 & 3 & 0 & 0 & \dots & 0 \\
-2 & 0 & 4 & 0 & \cdots & 0 \\
-2 & 0 & 0 & 5 & & 0 \\
& & & & \ddots & \vdots \\
-2 & 0 & 0 & 0 & \cdots & n
\end{array}\right|
\end{align*}$$
2. we subtract each row (say $k$th), multiplied by $\frac{1}{k+1}$ from the first row:
$$=
\left|\begin{array}{cccccc}
a_{1,1} & 0 & 0 & 0 & & 0 \\
-2 & 3 & 0 & 0 & \dots & 0 \\
-2 & 0 & 4 & 0 & \cdots & 0 \\
-2 & 0 & 0 & 5 & & 0 \\
& & & & \ddots & \vdots \\
-2 & 0 & 0 & 0 & \cdots & n
\end{array}\right|$$
3. As it's lower-triangular now, we consider $a_{1,1}$ as
$|A|=a_{1,1}\prod\limits_{k=3}^n k$,
$a_{1,1}=3+2\sum\limits_{k=3}^n \frac{1}{k}$