So I was trying this exercise, but I have a lot of doubts: On a projective plane $P^2(\Bbb{R})$ I have these points: $$P_0=\{0,0,1\},\quad P_1=\{0,1,-1\},\quad P_2=\{1,-1,0\},\quad P_3=\{1,1,-3\}$$and $$Q_0=\{1,0,0\},\quad Q_1=\{1,0,-1\},\quad Q_2=\{0,1,-1\},\quad Q_3=\{0,1,1\}$$ I have to say if exist a projective transformation $f:P^2(\Bbb{R})\rightarrow P^2(\Bbb{R})$ such that
$f(P_j)=Q_j$, $\qquad j=0,1,2,3$
and, If $f$ exist, I have to show it.
So, I defined an arbitrary Matrix
$$A=\begin{bmatrix}a & b &c\\d & e &f\\g & h &i\end{bmatrix}$$
Now I calculate $A*P_0=Q_0$
$$\begin{bmatrix}a & b &c\\d & e &f\\g & h &i\end{bmatrix} \cdot \begin{bmatrix}0\\0\\1\end{bmatrix}=\begin{bmatrix}1\\0\\0\end{bmatrix}$$
And I find $ \left\{ \begin{array}{c} c=1 \\ f=0 \\ i=0 \end{array} \right. $
I do the same whit the others:
$A*P_1=Q_1 \Rightarrow$ $ \left\{ \begin{array}{c} b-c=1 \\ e-f=0 \\ h-i=-1 \end{array} \right. $
$A*P_2=Q_2 \Rightarrow$ $ \left\{ \begin{array}{c} a-b=0 \\ d-e=1 \\ g-h=-1 \end{array} \right. $
$A*P_3=Q_3 \Rightarrow$ $ \left\{ \begin{array}{c} a+b-3c=0 \\ d+e-3f=1 \\ g+h-3i=1 \end{array} \right. $
But I can't find any solution for this system... Does it mean that $f$ doesn't exist? And when it says "show $f$ explicitly" what does it mean exactly?