I am slightly confused about the epsilon-delta proof of this theorem. I fully understand up to the point that: $$|f(x)-f(a)| < (|′()|+)⋅|−|$$ We then pick delta to be the $\hat{} =min(,̂/ (|′()|+))$ Thus, $|x-a|< \hat{}$. So if $$|f(x)-f(a)| < (|′()|+)⋅|−|$$and $|x-a|< \hat{}$, that means that $$|f(x)-f(a)| < (|′()|+)⋅ \hat{}$$ If $\hat{} = ̂/ (|′()|+)$, we obtain cancellations and deduce that $|f(x)-f(a)|< ̂$ for any choice not equal to initial epsilon.
If $\hat{}= $, is this the correct way to obtain continuity: $$\begin{align*}|f(x)-f(a)| &< (|′()|+)⋅|−| \\ &< (|′()|+)⋅ \\ &\leq (|′()|+)*̂/ (|′()|+) \\ &= ̂\end{align*}$$