Lemma 1:
If the limit of $(a_n)_{n\in\mathbb N}$ exists or is infinite, then $$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac1n\sum_{k=1}^na_k$$. Intuitively, the limit on the right is the average value of $(a_n)_{n\in\mathbb N}$, which is its limit. See here for more details.
Lemma 2:
If the limit of $(a_n)_{n\in\mathbb N}$ is $\infty$, then $$\lim_{n\to\infty}(a_n)^n=\infty$$.
Now it remains to see from lemma 1 that
$$\infty=\lim_{n\to\infty}n=\lim_{n\to\infty}\left(\frac1n\sum_{k=1}^nn^{1/x}\right)^x$$
and so the limit is $\infty$ for any $x\ne0$ by lemma 2.