6

$$\lim_{n \to \infty}\left(\frac{1^{1/x}+2^{1/x}+\ldots+n^{1/x}}{n}\right)^{nx}$$

I don't know any format or can't think of anything to solve this limit. It looks like it is Riemann's Sum Form but there is an x, so I am confused. Please help out. Thank You!

metamorphy
  • 39,111
rash
  • 2,060
  • 1
  • 9
  • 28

1 Answers1

3

Lemma 1:

If the limit of $(a_n)_{n\in\mathbb N}$ exists or is infinite, then $$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac1n\sum_{k=1}^na_k$$. Intuitively, the limit on the right is the average value of $(a_n)_{n\in\mathbb N}$, which is its limit. See here for more details.

Lemma 2:

If the limit of $(a_n)_{n\in\mathbb N}$ is $\infty$, then $$\lim_{n\to\infty}(a_n)^n=\infty$$.

Now it remains to see from lemma 1 that

$$\infty=\lim_{n\to\infty}n=\lim_{n\to\infty}\left(\frac1n\sum_{k=1}^nn^{1/x}\right)^x$$

and so the limit is $\infty$ for any $x\ne0$ by lemma 2.