1

Problem:

Compute $$I=\displaystyle\int_{-2}^{2}\frac{x^{4}}{1+6^{x}}dx$$

Wolfram Alpha gave me :

$$I=\frac{32}{5}$$

I used $y=-x$ and then integral became:

$$I=\displaystyle\int\limits_{-2}^{2}\frac{6^{x}x^{4}}{1+6^{x}}dx$$ But I don't know how to complete, I don't have no ideas.

I am waiting for your solution.


Thanks

InsideOut
  • 6,883

2 Answers2

10

Notice that $$I+I=\int_{-2}^{2}\frac{x^{4}}{1+6^{x}}dx+\int_{-2}^{2}\frac{6^{x}x^{4}}{1+6^{x}}dx=\int_{-2}^2x^4dx.$$

Kenta S
  • 16,151
  • 15
  • 26
  • 53
6

You are going in the right direction. Add the $2$ different expressions of $I$ and you get $$2I=\int_{-2}^2 \frac{(1+6^x)x^4}{1+6^x} dx=\int_{-2}^2 x^4 dx$$ Can you finish?