Here are all the questions :
1) Solve the linear diophantine $2093x - 4019y = 1$
Done, soutions are couples $(361+4019k,188+2093k)$, $k$ random integer.
2) Consider the congruence $$(F) : x^{251} \equiv -464 \pmod{4019}$$
2-a) Justify that $4019$ is prime. (done)
2-b) Prove that if $x$ is a solution of $(F)$ then $x^{4018} \equiv 1 \pmod{4019}$ (Done)
2-c) Prove that $$ (464)^{16} \equiv 2093 \pmod{ 4019} $$
Not Done
2-d) Deduce that $$x^2 \equiv 361 \pmod{ 4019}$$
Done (assuming (2-c))
2-e) Prove that
$$ x \equiv 19 \pmod{4019} \implies x \text{ is a solution of } (F) $$
Not done
2-f) What are all solutions of the congruence $(F)$ ?
Not done (How to disqualify the case $x \equiv -19 \pmod{4019} $ ? )
Thanks for any ideas, hints.