Proof that If $$ \sum_{n=1}^{\infty} z_{n} $$ converges, then $$\lim _{n \rightarrow \infty} z_{n}=0 $$ Prove for complex numbers
Given an infinite sequence $z_{1}, z_{2}, z_{3}, \ldots ., $ let $$ S_{N}=z_{1}+z_{2}+\cdots+z_{N} $$ We call the sequence $ S_{1}, S_{2}, S_{3}, \ldots $ an infinite series, which we denote $$ \sum_{n=1}^{\infty} z_{n} $$ We call $ S_{N} $ a partial sum. If $ S_{N} $ converges with $S=\lim _{N \rightarrow \infty} S_{N}, $then we say $\sum_{n=1}^{\infty} z_{n} $ converges and write $$ \sum_{n=1}^{\infty} z_{n}=S $$ If $S_{N} $ does not converge, we say $\sum_{n=1}^{\infty} z_{n}$ diverges. Suppose $z_{n}=x_{n}+i y_{n} $ and $S=X+i Y . $ Then it follows from previous results that $$ \sum_{n=1}^{\infty} z_{n}=S $$ and only if $$ \sum_{n=1}^{\infty} x_{n}=X \text { and } \sum_{i=1}^{\infty} y_{n}=Y $$ If $$ \sum_{n=1}^{\infty} z_{n} $$ converges, then $$\lim _{n \rightarrow \infty} z_{n}=0 $$ Proof. Let $$S=\sum_{n=1}^{\infty} z_{n} $$ and $$S_{N}=\sum_{n=1}^{N} z_{n} . $$Then $$ \lim _{N \rightarrow \infty} z_{N}=\lim _{N \rightarrow \infty}\left(S_{N}-S_{N-1}\right)=S-S=0 $$ Let $\sum_{n=1}^{\infty} z_{n} $ be a series with $ \operatorname{sum} S $ and $ N^{th} $ $ \operatorname{sum} S_{N}= $ $ \sum_{n=1}^{N} z_{n} . $ The remainder $\rho_{N} $ after $ N terms Is ( \rho_{N}=S-S_{N}
Notice that series $\sum_{n=1}^{\infty} z_{n} $ converges to ( S ) if and only if sequence Want to know that. Is this proof right or can i shorten this proof? If anyother easy way to proof please provide