-1

Proof that If $$ \sum_{n=1}^{\infty} z_{n} $$ converges, then $$\lim _{n \rightarrow \infty} z_{n}=0 $$ Prove for complex numbers

Given an infinite sequence $z_{1}, z_{2}, z_{3}, \ldots ., $ let $$ S_{N}=z_{1}+z_{2}+\cdots+z_{N} $$ We call the sequence $ S_{1}, S_{2}, S_{3}, \ldots $ an infinite series, which we denote $$ \sum_{n=1}^{\infty} z_{n} $$ We call $ S_{N} $ a partial sum. If $ S_{N} $ converges with $S=\lim _{N \rightarrow \infty} S_{N}, $then we say $\sum_{n=1}^{\infty} z_{n} $ converges and write $$ \sum_{n=1}^{\infty} z_{n}=S $$ If $S_{N} $ does not converge, we say $\sum_{n=1}^{\infty} z_{n}$ diverges. Suppose $z_{n}=x_{n}+i y_{n} $ and $S=X+i Y . $ Then it follows from previous results that $$ \sum_{n=1}^{\infty} z_{n}=S $$ and only if $$ \sum_{n=1}^{\infty} x_{n}=X \text { and } \sum_{i=1}^{\infty} y_{n}=Y $$ If $$ \sum_{n=1}^{\infty} z_{n} $$ converges, then $$\lim _{n \rightarrow \infty} z_{n}=0 $$ Proof. Let $$S=\sum_{n=1}^{\infty} z_{n} $$ and $$S_{N}=\sum_{n=1}^{N} z_{n} . $$Then $$ \lim _{N \rightarrow \infty} z_{N}=\lim _{N \rightarrow \infty}\left(S_{N}-S_{N-1}\right)=S-S=0 $$ Let $\sum_{n=1}^{\infty} z_{n} $ be a series with $ \operatorname{sum} S $ and $ N^{th} $ $ \operatorname{sum} S_{N}= $ $ \sum_{n=1}^{N} z_{n} . $ The remainder $\rho_{N} $ after $ N terms Is ( \rho_{N}=S-S_{N}

Notice that series $\sum_{n=1}^{\infty} z_{n} $ converges to ( S ) if and only if sequence Want to know that. Is this proof right or can i shorten this proof? If anyother easy way to proof please provide

2 Answers2

1

If $\sum_{n=1}^\infty z_n$ converges then the sequence $a_m = \sum_{n=1}^m z_n$ is convergent. So in particular, it is a Cauchy sequence, which means that for all $\epsilon > 0$ there exists some $M$ such that for all $m_1 \geq m_2 \geq M$:

$$|a_{m_1} - a_{m_2}| < \epsilon.$$

In particular this holds for $m_1 = m+1$ and $m_2 = m$ whenever $m \geq M$. Then

$$|a_{m_1} - a_{m_2}| = |\sum_{n=1}^{m+1} z_n -\sum_{n=1}^m z_n| = |z_{m+1}| < \epsilon.$$

So for all $m \geq M+1$ we have $|z_m| < \epsilon$. Since $\epsilon$ was arbitrary we have $\lim_{n \rightarrow \infty} z_n = 0$.

M. Wang
  • 899
0

Suppose $\sum\limits_{k=1}^{\infty} z_k$ converges. That means $\{\sum\limits_{k=1}^{n} z_k\}$ is a cauchy sequence. So for any $\epsilon >0$ there is an $N$ so that if $n,m > N$ then $|\sum\limits_{k=1}^{n} z_k - \sum\limits_{k=1}^{m} z_k|<\epsilon$. In particular for any $n > N+1$, $|\sum\limits_{k=1}^{n} z_k - \sum\limits_{k=1}^{n-1} z_k|=|z_n| < \epsilon$.

But if it were not true that $\lim\limits_{n\to \infty} z_n = 0$ then there would be a value $\epsilon_{death} > 0$ so that for any $N$ there will be an $n > N$ where $|z_n| > \epsilon_{death}$. That is contradictory to the result of paragraph 1. So it is not possilbe for $\sum\limits_{n=1}^{\infty} z_n$ and not have $\lim\limits_{n\to \infty} z_n = 0$.

fleablood
  • 124,253