Let $p \geq 3$ be a prime number.
How to prove that $(p-3)!+2^{p-2} \equiv 0 \ (\mathrm{mod} \ p)$?
My idea was to use Wilson's theorem:
Since $p$ is a prime it follows that $(p-1)! \equiv -1 \ (\mathrm{mod} \ p)$.
$\Rightarrow 1 \cdot \cdot \ \cdot (p-2)(p-3)+2^{p-2} \equiv -1 \ (\mathrm{mod} \ p)$
Then $1 \cdot \cdot \ \cdot (p-2)(p-3)+2^{p-2} +1 \equiv 0 \ (\mathrm{mod} \ p)$
Now I'm not sure what to do next. Is this way right or how can it be shown correctly?