It is known that if $f$ is Riemann integrable function then it is Lebesgue integrable, in particular $\ f:\left(\mathbb{R},\mathcal{L}\left ( \mathbb{R} \right),\lambda \right) \longrightarrow \mathbb{R} \ \ $ is measurable. In the proof of this theorem the completeness of $\mathcal{L} \left ( \mathbb{R} \right)$ is important.
My question: Is there any Riemann intagrable function $f:\left(\mathbb{R},\mathcal{B}\left ( \mathbb{R} \right), \lambda \right) \longrightarrow \mathbb{R} \ \ $ wiche is not $\mathcal{B}\left ( \mathbb{R} \right)$-measurable ?
Note that $\mathcal{B}\left ( \mathbb{R} \right)$ is not complet with respect to $\lambda$.