A random function $rand()$ return a integer between $1$ and $k$ with the probability $\frac{1}{k}$. After $n$ times we obtain a sequence $\{b_i\}_{i=1}^n$, where $1\leq b_i\leq k$. Set $\mathbb{M}=\{b_1\}\cup\{b_2\}\cdots \cup\{b_n\}$, $\mathbb{N}=\{b_1\}\cup\{b_2\}\cdots \cup\{b_{n-1}\}$,
I want to calclute the probability satisfy the following condition:
$\mathbb{M}=\{1, 2\cdots, k\}$ and $\mathbb{N}\neq\{1, 2\cdots, k\}$.
Denoting the probality with $P(n)$. If $1\leq n< k$, then $P(n)=0$. $P(n)=?$, where $n\geq k$.