0

I need help on how to show that for each positive integer $n$, $2009^n − 209^n − 839^n + 92^n$ is divisible by $117$.

I have tried divisible rule but couldn't come up with anything meaningful.

Any help?

Bill Dubuque
  • 272,048

2 Answers2

0

By using $$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+...+ab^{n-2}+b^{n-1}),$$ we obtain: $$2009^n-209^n-839^n+92^n=$$ $$=(2009-839)(2009^{n-1}+...+839^{n-1})-(209-92)(209^{n-1}+...+92^{n-1}).$$ Can you end it now?

0

Since $117=9\cdot 13$

So, it's sufficient to show that $9,13$ are divisors

$2009\equiv 2\mod 9$

$209\equiv 2\mod 9$

$839\equiv 2\mod 9$

$92\equiv 2\mod 9$

Hence,

$2009^n − 209^n − 839^n + 92^n\equiv 0\mod 9$

$2009\equiv 7\mod 13$

$209\equiv 1\mod 13$

$839\equiv 7\mod 13$

$92\equiv 1\mod 13$

Thus,

$2009^n − 209^n − 839^n + 92^n\equiv 0\mod 13$

Finally,

$2009^n − 209^n − 839^n + 92^n\equiv 0\mod 117$

ole
  • 649