Let $X_1,X_2,\ldots,X_n $ be iid random samples from $N_p(0,Σ)$ and $b = \sum_{i=1}^nc_iX_i$ and $\sum_{i=1}^nc_i^2 = 1$
I am trying to show $b = \sum_{i=1}^nX_iX_i^T-bb^T$ is independent of $bb^T$?
---solution---
$$b = X_1c_1+X_2c_2+\cdots+X_nc_n$$
$$c_1^2+c_2^2+\cdots+c_n^2 = 1$$
$$\sum_{i=1}^nX_iX_i^T = X_1^2+X_2^2+\cdots+X_3^2$$
Can I say $bb^T = c_i^2X_i^2 \to c_1^2+c_2^2+\cdots+c_n^2 = 1$ then $bb^T = X_i^2$
Please can you help me, how can I continue on?