Given $x=3-2\sqrt{2}$ find value of $\sqrt{x}-\frac{1}{\sqrt{x}}$
Method 1.
Let $$\sqrt{x}-\frac{1}{\sqrt{x}}=t \tag{1}$$
Squaring both sides we get $$t^2=x+\frac{1}{x}-2=(3+2\sqrt{2})+(3-2\sqrt{2})-2=4 \tag{2}$$ So $$t=\pm 2 \tag{3}$$
Method 2.
$$\sqrt{x}=\sqrt{3-2\sqrt{2}}=\sqrt{2}-1 \tag{4}$$
So $$\sqrt{x}-\frac{1}{\sqrt{x}}=\sqrt{2}-1-(\sqrt{2}+1)=-2 \tag{5}$$
What is correct?
$$-2 = \sqrt x - \frac 1 {\sqrt x} = 2$$
but $2 \ne -2$ obviously.
– PrincessEev May 14 '20 at 09:32