Let $H_i$ be a $\mathbb R$-Hilbert space, $A\in\mathfrak L(H_1,H_2)$ be compact, $|A|:=\sqrt{A^\ast A}$ and $\sigma\in\mathbb R$.
How would we describe the singular value decomposition of $A$ in the language of operator theory? (Assuming $\dim H_i\in\mathbb N$, if necessary.)
To fix terminology, say that $\sigma>0$ is a singular value of $A$ if $\sigma$ is an eigenvalue of $|A|$, i.e. $\mathcal N(\sigma-|A|)\ne\{0\}$. This definition is equivalent to claim that there are $x_i\in H_i$ with $\left\|x_i\right\|_{H_i}=1$ and $$Ax_1\sigma x_2\text{ and }A^\ast x_2=\sigma x_1\tag1.$$
By the Courant-Rayleigh minimax principle, we may enumerate the singular values of $A$ in nonincreasing order. So, let $\sigma_i(A)$ denote the $i$th largest singular value of $A$ for $i\in\mathbb N$. (If there are only $k$ different singular values, $\sigma_i(A)=0$ for all $i>k$.)
Now we may mimic some parts of the spectral theorem for compact self-adjoint operators: Let \begin{align}E_i&:=\mathcal N(\sigma_i(A)-|A|),\\d_i&:=\dim E_i\end{align} and $\left(e^{(i)}_1,\ldots,e^{(i)}_{d_i}\right)$ be an orthonormal basis of $E_i$ for $i\in\mathbb N$ and \begin{align}(\sigma_i)_{i\in\mathbb N}:=(\underbrace{\sigma_1(A),\ldots,\sigma_1(A)}_{=:\:d_1\text{ times}},\underbrace{\sigma_2(A),\ldots,\sigma_2(A)}_{=:\:d_2\text{ times}},\ldots),\\(e_i)_{i\in\mathbb N}:=\left(e^{(1)}_1,\ldots,e^{(1)}_{d_1},e^{(2)}_1,\ldots,e^{(2)}_{d_2},\ldots\right).\end{align} Then $(e_i)_{i\in\mathbb N}$ is an orthonormal basis of $\mathcal N(A)^\perp$ (since $\mathcal N(A)=\mathcal N(|A|)$) and $$|A|x_1=\sum_{i\in\mathbb N}\sigma_i\langle x_1,e_i\rangle_{H_1}e_i\tag2.$$
How do we need to proceed? And how is this related to the polar decomposition$^1$ of $A$?
$^1$ There is an unique partial isometry $U$ from $H_1$ to $H_2$ with $\mathcal N(U)=\mathcal N(A)$ and $A=U|A|$.