Let $A,B \subseteq E $. Show that $ \mathcal{P}(A)=\{X \cup Y \subseteq E| X \in \mathcal{P}(A\cap B) \land Y \in \mathcal{P}(A\backslash B) \} $
Tranlating the set from set builder notation to quantified statements I get: $$\forall X \cup Y \subseteq E, X \cup Y \in \mathcal{P}(A) \iff X\in\mathcal{P}(A\cap B) \land Y \in \mathcal{P}(A\backslash B) \ $$
Using double implication and the fact that $ \forall $ distrubutes with respect to $ \land $ I get:
$$(\forall X \cup Y \subseteq E, X \cup Y \in \mathcal{P}(A) \implies X\in\mathcal{P}(A\cap B) \land Y \in \mathcal{P}(A\backslash B)) \ \land (\forall X \cup Y \subseteq E, X\in\mathcal{P}(A\cap B) \land Y \in \mathcal{P}(A\backslash B) \implies X \cup Y \in \mathcal{P}(A)) $$
I had no trouble to prove the second statement, but I'm not sure about the first. I tried to assume what X and Y are such that $ X \cup Y \in \mathcal{P}(A)$ but I think that's not possible. Another idea I tried is to prove the statement by cases, considering $ B= \emptyset, A \cap B = \emptyset $ and $ A\cap B \neq \emptyset $,
Does anyone have any recommendations on how to prove this?
Thanks for reading!