As we know, if $A = (a_{ij})$ is an $n\times n$ matrix, its determinant is given by:
$$\mbox{det}A = \sum_{\sigma \in S_{n}}\epsilon_{\sigma}\prod_{i=1}^{n}a_{i,\sigma(i)}$$
where $S_{n}$ is the set of all permutations $\sigma$ of the set $I_{n}:=\{1,...,n\}$ and $\epsilon_{\sigma}$ is the sign of the permutation $\sigma$. In your case, we have $n=3$.
Let us consider the matrix:
$$\Delta_{ijk} := \begin{pmatrix} \delta_{i1} & \delta_{i2} & \delta_{i3} \\ \delta_{j1} & \delta_{j2} & \delta_{j3} \\ \delta_{k1} & \delta_{k2} & \delta_{k3} \end{pmatrix} $$
For simplicity, let us consider only the case where $i,j,k$ are all different because, if not, it is easy to see that the result follows because at least two rows of $\Delta_{ijk}$ are equal, so that $\det \Delta_{ijk} = 0$ and also is $\epsilon_{ijk}$. Now, as you pointed out, we have:
$$ \epsilon_{ijk} = \mbox{det} \Delta_{ijk} = \sum_{\sigma \in S_{3}}\epsilon_{\sigma}\prod_{i=1}^{3}\delta_{i,\sigma(i)}$$
Now, let $\eta$ be a fixed permutation of $S_{3}$. Every permutation is a bijection from $I_{3}$ to itself, so every permutation has an inverse $\eta^{-1}$. Also, it is easy to prove that $\epsilon_{\eta^{-1}} = \epsilon_{\eta}$. Now, note that:
$$\epsilon_{\eta(i),\eta(j),\eta(k)} = \sum_{\sigma \in S_{3}}\epsilon_{\sigma}\prod_{i=1}^{3}\delta_{\eta(i),\sigma(i)} $$
If we set $\eta(i) = k$, then $i = \eta^{-1}(k)$ and:
$$\sum_{\sigma \in S_{3}}\epsilon_{\sigma}\prod_{i=1}^{3}\delta_{\eta(i),\sigma(i)} = \sum_{\sigma \in S_{3}}\epsilon_{\sigma}\prod_{k=1}^{3}\delta_{k,(\sigma\circ \eta^{-1})(k)} $$
If we sum over every permutation $\sigma$ in $S_{3}$, the composite $\sigma \circ \eta^{-1}$ also covers every permutation of $S_{3}$ so we can redefine $\tilde{\sigma} = \sigma\circ\eta^{-1}$ and:
$$\sum_{\sigma \in S_{3}}\epsilon_{\sigma}\prod_{k=1}^{3}\delta_{k,(\sigma\circ \eta^{-1})(k)} = \sum_{\tilde{\sigma} \in S_{3}}\epsilon_{\eta}\epsilon_{\tilde{\sigma}}\prod_{k=1}^{3}\delta_{k,\tilde{\sigma}(k)} =\epsilon_{\eta}\mbox{det}\Delta_{ijk}$$
where I've used:
$$\epsilon_{\sigma} = \epsilon_{\tilde{\sigma}}\frac{1}{\epsilon_{\tilde{\sigma}}}\epsilon_{\sigma} = \epsilon_{\tilde{\sigma}}\frac{1}{\epsilon_{\eta}\epsilon_{\sigma}}\epsilon_{\sigma} = \epsilon_{\eta}\epsilon_{\tilde{\sigma}}.$$
The conclusion is that:
$$\epsilon_{\eta(i),\eta(j),\eta(k)}= \epsilon_{\eta}\overbrace{\mbox{det}\Delta_{ijk}}^{=1} = \epsilon_{\eta}$$
Thus, $\epsilon_{\eta(i),\eta(j),\eta(k)}$ coincides with the sign of the permutation $\eta$, i.e. it is $1$ if $\eta$ is an even permutation and $-1$ otherwise.