Show that $||x||_2\leq ||x||_1$ on $\Bbb R^d$
My attempt:
First I will prove that $\sum^n_{i=1}x^2_i\leq \sum^n_{i=1}|x_i|$:
Let $x=(x_1,x_2)\in \Bbb R^2$ Then $(x_1+x_2)^2=x^2_1+x^2_2+2x_1x_2\geq x_1^2+x^2_2$
Hence $\sqrt{x_1^2+x_2^2}\leq |x_1|+|x_2|$ . So by induction, $\sum^n_{i=1}x^2_i\leq \sum^n_{i=1}|x_i|$
The above proof I took from this answer
So, $||x||_2=\sqrt{\sum^d_{i=1}x^2_i}\leq \sum^d_{i=1}|x_i|=||x||_1$
Would this be correct?