Using the same ideas as in a recent answer (https://math.stackexchange.com/a/4024522/198592) here is a solution which is very close to that of @xpaul and @Gary but more elementary in the final step (without polygamma functions).
We will prove that
$$s(k):=\sum _{n=1}^{\infty } \frac{n \bmod k}{n (n+1)}=\log (k)\tag{1}$$
- simplify the mod function letting
$$n = m k +j, m=0,1,2,..., j=1, 2, ..., k-1\tag{2}$$
notice that $j$ runs only up to $k-1$ because $(m k + k) mod(k) = 0$.
Then $n \bmod k = j$ and defining
$$u(k,j) = \sum_{m=0}^{\infty} \frac{j}{(m k+j)(m k+j+1)}\tag{3}$$
we get
$$s(k) = \sum_{j=1}^{k-1} u(k,j)\tag{4}$$
- Calculate $u$
Instead of doing the $m$-sum directly which leads to polygamma functions we prefer to represent denominators by integrals using the formula $\frac{1}{a}=\int_{0}^{\infty} e^{-a t}\,dt$
After partial fraction decomposition
$$\frac{j}{(j+k m) (j+k m+1)}=\frac{j}{j+k m}-\frac{j}{j+k m+1}$$
this gives after also doing the $m$-sum
$$u(k,j) = \int_{0}^{\infty} j\sum_{m=0}^{\infty}\left(e^{-t(j+m k)}-e^{-t(1+j+m k)} \right)\,dt=\int_{0}^{\infty} j\left( \frac{e^{k t-j t}}{e^{k t}-1}-\frac{e^{k t-(j+1) t}}{e^{k t}-1}\right)\,dt\tag{5}$$
- do the $j$-sum under the integral gives for the integrand
$$\sum_{j=1}^{k-1} j\left( \frac{e^{k t-j t}}{e^{k t}-1}-\frac{e^{k t-(j+1) t}}{e^{k t}-1}\right) = \frac{k \left(-e^t\right)+e^{k t}+k-1}{\left(e^t-1\right) \left(e^{k t}-1\right)}=\frac{1}{e^t-1}-\frac{k}{e^{k t}-1}\tag{6}$$
- the final step is to calculate the $t$-integral
$$s(k) = i(k) := \int_{0}^{\infty} \left(\frac{1}{e^t-1}-\frac{k}{e^{k t}-1}\right)\,dt\tag{7}$$
The indefinte integral (antderivative) is
$$a(t) = \int \left(\frac{1}{e^t-1}-\frac{k}{e^{k t}-1}\right)\,dt\\
=-t+k t+\log \left(\frac{e^t-1}{e^{k t}-1}\right)\tag{8}$$
and for the limits at the integration boundaries we find
$$a(t \to \infty) = 0, a(t \to 0) = \log(\frac{1}{k})\tag{9}$$
Hence the integral $(7)$ becomes $i(k)=\log(k)$ which completes the proof.
Details of the limits
$$\begin{align}
a(t \to 0) :
& -t + k t+\log \left(\frac{e^t-1}{e^{k t}-1}\right)\\
& \to \log \left(\frac{\left(1+t+...\right)-1}{\left(1+k t +...\right)-1}\right)\\
& \to \log \left(\frac{1}{k}\right)
\end{align}\tag{10a}$$
$$\begin{align}
a(t \to \infty) :
& -t + k t+\log \left(\frac{e^t-1}{e^{k t}-1}\right)\\
& \to -t +k t+\log \left(\frac{e^t \left(1-e^{-t}\right)}{e^{k t} \left(1-e^{-k t}\right)}\right)\\
& \to -t+k t+\log \left(\frac{e^t}{e^{k t}}\right)+\log \left(\frac{1-e^{-t}}{1-e^{-k t}}\right)\\
& = \log \left(\frac{1-e^{-t}}{1-e^{-k t}}\right) \to 0
\end{align}\tag{10b}$$
Discussion
The integral $i(k)$ extends the domain of $s(k)$ to real values of $k$.