How can I prove $$f(x)=\sum_{n=1}^\infty\dfrac{(-1)^n}{n}\chi_{[n-1,n)}(x)$$ is not Lebesgue Integrable?
$$\int_\mathbb{R}\left(\sum_{n=1}^{\infty}\frac{|(-1)^n|}{n}1_{[n-1,n)}(x)\right)d\mu=\sum_{n=1}^{\infty}\int_\mathbb{R}\frac{|(-1)^n|}{n}1_{[n-1,n)}(x)\hspace{0.25cm}d\mu$$