The polynomial $1+x+x^2+...+x^{n-1}$ divides $1+x^2+x^4+...+x^{2010}$ exactly when
$$
(x^n-1)=(x-1)(1+x+...+x^{n-1})|(x-1)(1+x^2+x^4+...)=\frac{x^2-1}{x+1}(1+x^2+...+x^{2010})=\frac{x^{2012}-1}{x+1}.
$$
If the polynomial $x^n-1$ divides the polynomial $\frac{x^{2012}-1}{x+1},$ then all the (complex) roots of $x^n-1$ must also be roots of $x^{2012}-1,$ but $x=-1$ cannot be a root of $x^n-1.$. Because $-1$ is a root of $x^n-1$ when $n$ is even, the value $n$ must be odd. If $n$ is odd, then it is sufficient that $x^n-1|x^{2012}-1.$ But the complex roots of $x^n-1$ are shared by $x^{2012}-1$ exactly when $n$ divides $2012$. The only value $n$ in the range $[1005, 2010]$ for which this happens is $1006$, but this even, so there are zero solutions for $n$ in the range $[1005,2010].$