Title is not long enough, this has 2 parts of equality. Show $$\sum_{k=0}^{n} \binom{n}{k} \binom{r+k}{n} = \sum_{k=0}^{n} \binom{n}{k} \binom{r}{k} 2^k = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} \binom{r+k}{k} 2^k$$
So, using
$$ \binom{r+k}{n}=\sum_{l=0}^{n}\binom{r}{l}\binom{k}{n-l} $$
Then
$$ \sum_{k=0}^{n} \binom{n}{k} \binom{r+k}{n}=\sum_{k=0}^{n}\binom{n}{k} \sum_{l=0}^{n}\binom{r}{l}\binom{k}{n-l} $$
It looks like using $$ \binom{n}{k}\binom{k}{r}=\binom{n}{r}\binom{n-r}{k-r} $$
more or less solves the 1st equality, by using $u=n-k$
$$ \binom{n}{k}\binom{r}{l}\binom{k}{n-l}=\binom{n}{u}\binom{r}{u}\binom{n-u}{l-u} $$
then (for $s=l-u$)
$$ \sum_{u=0}^{n}\binom{n}{u}\binom{r}{u}\sum_{l=0}^{n}\binom{n-u}{l-u}=\sum_{u=0}^{n}\binom{n}{u}\binom{r}{u}\sum_{s=0}^{n-u}\binom{n-u}{s}=\sum_{u=0}^{n}\binom{n}{u}\binom{r}{u}2^{n-u} $$
which by $\binom{n}{k}=\binom{n}{n-k}$ and $n-u=k$ equals
$$ \sum_{k=0}^{n}\binom{n}{k}\binom{r}{n-k}2^{k} $$
Not sure what property turns $\binom{r}{n-k}$ into $\binom{r}{k}$ here?
2nd equality maybe uses
$$ \sum_{s=k}^{n}(-1)^{s-k}\binom{s}{k}\binom{n}{s}=\delta_{k,n} $$
and i'm not sure how to get that one?