I want to implement $M_{ij} = \frac {D^2_{1j}+D^2_{i1}-D^2_{ij}} 2 \,$to find the coordinates of points from distance matrix. And we already know one point is original point (0,0) which can be regard as $D_{11}$.Here is my distance matrix.
\begin{array}{lc} \verb|Distance Matrix| & \left(\begin{matrix} 0 & 5 & 8 \\ 5 & 0 & 2 \\ 8 & 2 & 0 \end{matrix}\right) \\[15pt] \end{array}
My solution for the problem:
Step 1 I calculate the the matrix M based on the formula $M_{ij} = \frac {D^2_{1j}+D^2_{i1}-D^2_{ij}} 2 \,$. Here is my result:
\begin{array}{lc} \verb|Matrix M| & \left(\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 42.5 \\ 0 & 42.5 & 0 \end{matrix}\right) \\[15pt] \end{array}
Step2 By eigenvalue decomposition, we could use the formula $Ax = λx$ /$(A-λI)x = 0$ to get the eigen-vectors $x$ and eigen-value $λ$. Here is my processing:
\begin{array}{lc} \verb|(A-λI)x| & \left(\begin{matrix} -λ& 0 & 0 \\ 0 & -λ& 42.5 \\ 0 & 42.5 & -λ \end{matrix}\right) \left(\begin{matrix} x1 \\ x2 \\ x3 \end{matrix}\right)\\[15pt] \end{array} Then by using the formula: $det((A-λI) = 0$, we could get the eigen-value λ. There exists three kinds of eigen-value λ, including the 0,42.5,-42.5.(The equation like this: $(-1)^2*λ*(λ^2-42.5^2) = 0$).
Step3 We could calculate the eigen-vectors by using (A-λI)x and the value of λ, here is my calculation process:
When λ = 0: \begin{array}{lc} \verb|(A-0I)x = 0:| & \left(\begin{matrix} 0& 0 & 0 \\ 0 & 0& 42.5 \\ 0 & 42.5 & 0 \end{matrix}\right) \left(\begin{matrix} x1 \\ x2 \\ x3 \end{matrix}\right)\\[15pt] \end{array}
\begin{array}{lc} \verb|value of x = | & \left(\begin{matrix} t_1 \\ 0 \\ 0 \end{matrix}\right) \\[15pt] \end{array}
when λ = -42.5:
\begin{array}{lc} \verb|(A+42.5I)x = 0:| & \left(\begin{matrix} 42.5& 0 & 0 \\ 0 & 42.5& 42.5 \\ 0 & 42.5 & 42.5 \end{matrix}\right) \left(\begin{matrix} x1 \\ x2 \\ x3 \end{matrix}\right)\\[15pt] \end{array}
\begin{array}{lc} \verb|value of x = | & \left(\begin{matrix} 0\\ t_2 \\ -t_2 \end{matrix}\right) \\[15pt] \end{array}
when λ = 42.5:
\begin{array}{lc} \verb|(A-42.5I)x = 0:| & \left(\begin{matrix} -42.5& 0 & 0 \\ 0 & -42.5& 42.5 \\ 0 & 42.5 & -42.5 \end{matrix}\right) \left(\begin{matrix} x1 \\ x2 \\ x3 \end{matrix}\right)\\[15pt] \end{array}
\begin{array}{lc} \verb|value of x = | & \left(\begin{matrix} 0 \\ t_3 \\ t_3 \end{matrix}\right) \\[15pt] \end{array}
Step 4 Now we know the formula $M = USU^T$ , the value of U and the Value of S.
\begin{array}{lc}
\verb|U:| & \left(\begin{matrix}
t_1 & 0 & 0 \\
0 & t_2 & t_3 \\
0 & -t_2 & t_3
\end{matrix}\right) \\[15pt]
\end{array}
\begin{array}{lc}
\verb|S:| & \left(\begin{matrix}
0 & 0 & 0 \\
0 & -42.5 & 0 \\
0 & 0 & 42.5
\end{matrix}\right) \\[15pt]
\end{array}
Step 5 We could get the final result of the points using the formula enter link description here:$X = U \sqrt S$. \begin{array}{lc} \verb|X = U \sqrt S:| & \left(\begin{matrix} 0 & 0 & 0 \\ 0 & t_2*\sqrt -42.5 & 0 \\ 0 & 0 & t_3*\sqrt 42.5 \end{matrix}\right) \\[15pt] \end{array}
Now, I just stuck in it. I still cannot get the real coordinates of points. And the answer isn't correct because the value of sqrt cannot be the negative number! Please help me, I don't know how to handle the problem!