0

Let $f\::\mathbb{R}\to\mathbb{R}$ be integrable function for all $[a,b],\hspace{0.2cm} (a<b, \hspace{0.5cm} a,b\in\mathbb{R}$).

and$\hspace{0.2cm}\forall c,x\in\mathbb{R} \hspace{0.2cm} f(x)\not=0 \hspace{0.2cm} and \hspace{0.2cm}{\displaystyle \int_{c}^{c+1}f(x)\,dx}=0$

Can I have an example for such function?

Thank you!

Ludwig
  • 395

1 Answers1

3

You see according to what you say let us take

$f(x)=\sin 2\pi x, \text{ for } x\in\mathbb{R- Z}$

$f(x)=1, \text{ for } x\in\mathbb{ Z}$

$$\int_{a}^{b}\sin 2\pi x \mathrm dx <\infty, \forall a<b$$

And $$\int_{c}^{c+1}\sin 2\pi x \mathrm dx=\int_{0}^{1}\sin 2\pi x \mathrm dx=0, \forall c$$.