Let $f\::\mathbb{R}\to\mathbb{R}$ be integrable function for all $[a,b],\hspace{0.2cm} (a<b, \hspace{0.5cm} a,b\in\mathbb{R}$).
and$\hspace{0.2cm}\forall c,x\in\mathbb{R} \hspace{0.2cm} f(x)\not=0 \hspace{0.2cm} and \hspace{0.2cm}{\displaystyle \int_{c}^{c+1}f(x)\,dx}=0$
Can I have an example for such function?
Thank you!