The question is from Schaum's Outline of Complex numbers
Provided that $\lim \limits_{n\to \infty} u_n=l$, prove that $\lim \limits_{n\to \infty} \frac{\sum_{k=1}^nu_k}{n}=l$
This is how I have gone about it
$|\frac{\sum_{k=1}^nu_k}{n}-l|$
$=|\frac{\sum_{k=1}^n (u_k-l)}{n}|$
$\le \frac{1}{n}\sum_{k=1}^n|u_k-l|$
Now, since $\lim \limits_{n\to \infty} u_n=l$, $\lim \limits_{n\to \infty} (u_n-l)=0 $ $\to \lim \limits_{n\to \infty} |u_n-l|=0$
I know that this is a necessary condition for $\sum_{k=1}^n|u_k-l|$ to converge, but not a sufficient one. If it does converge, then we are done, since we can say that $\sum_{k=1}^n|u_k-l|=S$, where $S$ is finite, so $|\frac{\sum_{k=1}^nu_k}{n}-l| \le \frac{1}{n}\sum_{k=1}^n|u_k-l|=\frac{S}{n}$, so if $\frac{S}{n}<\epsilon$ i.e $n>\frac{S}{\epsilon}$, then $|\frac{\sum_{k=1}^nu_k}{n}-l|<\epsilon$
The problem is I don't know how to show that $\sum_{k=1}^n|u_k-l|$ actually converges.
Any help would be appreciated, thank you.