Let $\mathbf{x}$ be a $N$-dimensional random vector with independent Gaussian entries, i.e., $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I}_{N})$. Furthermore, let $\mathbf{a}_{1} \in \mathbb{R}^{N}$ and $\mathbf{a}_{2} \in \mathbb{R}^{N}$ be two given vectors. I'd like to derive the expression of \begin{align} \mathbb{E}[\mathrm{sgn}(\mathbf{a}_{1}^{T} \mathbf{x}) \mathrm{sgn}(\mathbf{a}_{2}^{T} \mathbf{x})] & = \mathbb{P}[\mathbf{a}_{1}^{T} \mathbf{x} > 0 \land \mathbf{a}_{2}^{T} \mathbf{x} >0] \\ & \ \ \ \ + \mathbb{P}[\mathbf{a}_{1}^{T} \mathbf{x} > 0 \land \mathbf{a}_{2}^{T} \mathbf{x} < 0] \\ & \ \ \ \ - \mathbb{P}[\mathbf{a}_{1}^{T} \mathbf{x} < 0 \land \mathbf{a}_{2}^{T} \mathbf{x} > 0] \\ & \ \ \ \ - \mathbb{P}[\mathbf{a}_{1}^{T} \mathbf{x} < 0 \land \mathbf{a}_{2}^{T} \mathbf{x} < 0]. \end{align}
Edit: I found the answer to be
$$\mathbb{E}[\mathrm{sgn}(\mathbf{a}_{1}^{T} \mathbf{x}) \mathrm{sgn}(\mathbf{a}_{2}^{T} \mathbf{x})] = \frac{2}{\pi} \arcsin \bigg( \frac{\mathbf{a}_{1}^{T} \mathbf{a}_{2}}{\|\mathbf{a}_{1}\| \, \|\mathbf{a}_{2}\|} \bigg)$$
but I cannot understand the reasoning behind this formula. Furthermore, I'd like to understand how to obtain the individual joint probability terms, e.g., $\mathbb{P}[\mathbf{a}_{1}^{T} \mathbf{x} > 0 \land \mathbf{a}_{2}^{T} \mathbf{x} >0]$. A proof or rigorous explanation will be most welcome.
$$E[\operatorname{sgn}(a_1^Tx)\operatorname{sgn}(a_2^Tx)]=2P(a_1^Tx>0,a_2^Tx>0)-2P(a_1^Tx>0,-a_2^Tx>0)$$
Since $(a_1^Tx,-a_2^Tx)$ is jointly normal with correlation $-\rho$, the entire expression simplifies to $\frac2{\pi}\sin^{-1}\rho$. This is also answered at https://math.stackexchange.com/q/3058888/321264.
– StubbornAtom May 06 '20 at 17:45