I was running around the internet looking at Dihedral groups and ran into a page that claimed that $D_{10} = C_2$ $\times$ $D_5$ (I know notation for Dihedral groups is confusing - here I'm using $D_{n}$ to denote the Dihedral group of order $2n$), and was wondering as to why this is the case.
Now I've been mostly thinking about this in terms of group representations. I know $D_{10} =$ <$a, b: a^{10} = b^2 = 1,$ and $bab^{-1} = a^{9}$>, or equivalently, <$a, b: a^{10} = b^2 = (ba)^2 = 1$> ($a$ is akin to a rotation and $b$ is akin to a reflection).
I also know that $D_5 =$ <$u, v: u^5 = v^2 = 1,$ and $vuv^{-1} = u^4$>, while $C_2 = <c:c^2=1>$. Then thinking of '$\times$' as creating an ordered pair, to me it would seem that $C_2$ $\times$ $D_5$ gives us a group with 3 generators, with the relations listed as above.
I'm not quite sure where to go from here. One thing that stands out to me is the fact that we have two generators of order 2 ($v$ and $c$), and I suspect we might make use of that somehow. However, I'm still not sure how to get the group presentation to look like $D_{10}$'s. I guess thinking about it now, I'm not even really sure how to picture what $C_2$ $\times$ $D_5$ would look like (and if there even is a way to visualize it without $D_{10}$).
Any help would be appreciated, and if there is a different way to approach this problem (Isomorphism between the two groups), that would be welcome as well, though I really do want to try and figure this question out through group presentations as I feel it's a very useful tool.