Find all values of real number p for which the series converges absolutely
$$\sum_{k=2}^{\infty} \frac{1}{k\, (\log{k})^p}$$
Find all values of real number p for which the series converges absolutely
$$\sum_{k=2}^{\infty} \frac{1}{k\, (\log{k})^p}$$
This is amenable to the well-known Cauchy condensation test that goes as follows:
If we have a non-negative decreasing sequence $\{a_n\}_{n=1,2,\ldots}^{\infty}$, then $$\displaystyle \sum_{n=2}^{\infty} a_n \text{ converges iff }\displaystyle \sum_{n=2}^{\infty} 2^na_{2^n} \text{ converges}$$
In your case, we have $a_n = \dfrac1{n \log^p(n)}$.
Hence,$$\sum_{n=2}^{\infty} 2^na_{2^n} = \sum_{n=2}^{\infty} \dfrac{2^n}{2^n (n \log2)^p} = \dfrac1{(\log2)^p}\sum_{n=2}^{\infty} \dfrac1{n^p}$$ which converges for $p>1$ and diverges for $p \leq 1$.