5

Please, help me to prove that $$x_n=\left(1+\frac{1}{n}\right)^{n+1}$$decreases. I know I must to prove that that $$\frac{x_n}{x_{n+1}}> 1$$

What to do next?

Aryabhata
  • 82,206
Walter r
  • 1,097

3 Answers3

3

Write out $$ \frac{x_{n+1}}{x_n} = \frac{\left(1+\frac{2}{n}\right)^2}{\left(1+\frac{1}{n}\right)^3} \left( \frac{1+\frac{2}{n}}{\left(1+\frac{1}{n} \right)^2} \right)^n = \frac{\left(1+\frac{2}{n}\right)^2}{\left(1+\frac{1}{n}\right)^3} \left( 1 - \frac{\frac{1}{n^2}}{\left(1+\frac{1}{n} \right)^2} \right)^n = \frac{\left(1+\frac{2}{n}\right)^2}{\left(1+\frac{1}{n}\right)^3} \left( 1 - \frac{1}{\left(n+1 \right)^2} \right)^n = \left(1+\frac{n}{(n+1)^2} - \frac{1}{(n+1)^3} \right) \left( 1 - \frac{1}{\left(n+1 \right)^2} \right)^n $$ we now have to use $(1-x)^n \leqslant \frac{1}{1+n x}$ for $0<x<1$ and $n \geqslant 1$: $$ \frac{x_{n+1}}{x_n} \leqslant \frac{1+\frac{n}{(n+1)^2} - \frac{1}{(n+1)^3}}{ 1+\frac{n}{(n+1)^2} } < 1 $$

Sasha
  • 70,631
  • Sasha, we have $x_n=\left(1+\frac{1}{n}\right)^{n+1}$ and $x_{n+1}=\left(1+\frac{1}{n+1}\right)^{n+2}$. From this, how can I get $\frac{x_{n+1}}{x_n} = \frac{\left(1+\frac{2}{n}\right)^2}{\left(1+\frac{1}{n}\right)^3} \left( \frac{1+\frac{2}{n}}{\left(1+\frac{1}{n} \right)^2} \right)^n$ ? – Walter r Apr 18 '13 at 21:47
  • $$\frac{x_{n+1}}{x_n} = \frac{(n+2)^{n+2} \cdot n^{n+1}}{ (n+1)^{n+2} \cdot (n+1)^{n+1}} = \frac{\left(1+\frac{2}{n} \right)^{n+2} \cdot n^{n+2} \cdot n^{n+1}}{ \left(1+\frac{1}{n}\right)^{n+2} \cdot n^{n+2} \cdot \left(1+\frac{1}{n}\right)^{n+1} \cdot n^{n+1}} $$ Now simplify and regroup. – Sasha Apr 18 '13 at 22:08
1

Let $f(x) = (1+\frac{1}{x})^{x+1}$. In the following, we show that $f(x)$ is decreasing for $x>0$. We have $f(x) = \exp[(x+1)\log(1+\frac{1}{x})]$ and it is thus sufficient to show that $g(x) = (x+1)\log(1+\frac{1}{x})$ is decreasing. Indeed, $$g'(x) = \log\left(1+\frac{1}{x}\right) - \frac{1}{x} < \frac{1}{x} - \frac{1}{x} = 0,$$ as $\log(1+y)<y,\,\forall y> 0$.

Lord Soth
  • 7,750
  • 20
  • 37
  • 2
    Usually one studies this sequence in order to introduce the exponential function and its inverse, the logarithm. Decreasing of this sequence can be proven by more elementary methods. The book "Analysis by its history" starts this way. – Sasha Apr 18 '13 at 18:43
1

This can be shown using AM $\ge$ GM or using Bernoulli's ineqaulity.

1) Using AM $\ge$ GM

Take one copy of $1$, and $n$ copies of $1 - \frac{1}{n}$, ($n \gt 1$) to get

$$ \frac{1 + n(1 - \frac{1}{n})}{n+1} \gt \left(1-\frac{1}{n}\right)^{n/(n+1)}$$

which simplies to

$$ \left(\frac{n}{n+1}\right)^{n+1} \gt \left(\frac{n-1}{n}\right)^n$$

Taking the reciprocals, yields

$$ \left(1 + \frac{1}{n}\right)^{n+1} \lt \left(1 + \frac{1}{n-1}\right)^n $$

2) Using (generalized) Bernoulli's inequality

$$(1 + x)^r \lt 1 + rx $$ for the case when $x \gt -1$, $x \neq 0$, and $0 \lt r \lt 1 $

Here we set $x = -\frac{1}{n}$, $r = \frac{n}{n+1}$ and obtain the result easily.


For a similar problem and multiple proofs of that (including AM,GM and bernoulli's inequality), see: Proving : $ \bigl(1+\frac{1}{n+1}\bigr)^{n+1} \gt (1+\frac{1}{n})^{n} $

Aryabhata
  • 82,206