Enforcing the substitution $z\mapsto e^{-z}$ and recalling that $n!=\Gamma(n+1)=\int_0^\infty z^ne^{-z}\,dz$ we can write
$$\begin{align}
f_n(x)&=\int_0^x\frac{(-\log(z))^n}{n!}\,dz\\\\
&=\frac{1}{n!}\int_{\log(1/x)}^\infty z^ne^{-z}\,dz\\\\
&=\frac1{n!}\int_0^\infty z^ne^{-z}\,dz-\frac1{n!}\int_0^{\log(1/x)}z^ne^{-z}\,dz\\\\
&=1-\frac1{n!}\int_0^{\log(1/x)}z^ne^{-z}\,dz
\end{align}$$
Finally, using the estimate
$$\left|\frac1{n!}\int_0^{\log(1/x)}z^ne^{-z}\,dz\right|\le \frac{\log^{n+1}(1/x)}{n!} $$
the squeeze theorem guarantees that $\lim_{n\to \infty }\frac1{n!}\int_0^{\log(1/x)}z^ne^{-z}\,dz=0$.
Putting it all together, yields the coveted limit
$$\lim_{n\to\infty}f_n(x)=1$$
for $x\in (0,1)$. And we are done!