2

So here is the proposition I'd like to prove:

a ∨ ¬a ⊢((a→b)→a)→a

I have tried many way to find a proof, and always end up in a mess...

for example:

a ∨ ¬a ⊢((a→b)→a)→a

a ⊢((a→b)→a)→a (elimination of disjunction)

a ∧ (a→b)⊢ a→a

(a→b)∧ a ⊢ a→a

(a→b) ⊢ a→a→a

(a→b) ⊢ True?

Anybody has an idea how to get me out of my mess?

Thank you!

Phil
  • 31

1 Answers1

2

Suppose $a$. Then $((a\rightarrow b)\rightarrow a)\rightarrow a$.

Now suppose $\lnot a$. Then $(a\rightarrow b)$. So if $(a\rightarrow b)\rightarrow a$, by modus ponens $a$. So $((a\rightarrow b)\rightarrow a)\rightarrow a$.

In either case, we have $((a\rightarrow b)\rightarrow a)\rightarrow a$, so $a\lor \lnot a\vdash ((a\rightarrow b)\rightarrow a)\rightarrow a$.

Alex Kruckman
  • 76,357