I need to sum$$\sum_{k=1}^{n-1} |1- e^{{2\pi ik}\over {n}}| $$ which finally reduces to
$$\sum_{k=1}^{n-1} 2\sin\ {{\pi k} \over {n}}.$$
But I'm stuck here.The final answer is supposed to be $n$ .
I need to sum$$\sum_{k=1}^{n-1} |1- e^{{2\pi ik}\over {n}}| $$ which finally reduces to
$$\sum_{k=1}^{n-1} 2\sin\ {{\pi k} \over {n}}.$$
But I'm stuck here.The final answer is supposed to be $n$ .
Hint
$$\sum_{k=1}^{n-1} 2\sin\ {{\pi k} \over {n}}=2\mathrm{Im}\left(\sum_{k=1}^{n-1}e^{ik\pi/n}\right)$$ and we can sum the terms of geometric sequence.
I think the question should be the value of the following sum:
$$\sum_{k=0}^{n-1}\left (1-e^{\frac{2\pi ik}{n}} \right ) = \sum_{k=0}^{n-1}1 - \sum_{k=0}^{n-1}e^{\frac{2\pi ik}{n}} = n - \frac{1-e^{2\pi i}}{1-e^{\frac{2\pi i}{n}}} = n$$
The last equality follows because $e^{2\pi i}=1$.
$$\left|1-e^{\frac{2\pi i}{3}}\right|+\left|1-e^{\frac{4\pi i}{3}}\right|=2\left|\frac{3}{2}-\frac{\sqrt 3}{2}i\right|=\sqrt{9+3}=2\sqrt 3\neq 3$$
so your claim is not true...Check this, either you or I are wrong.
– DonAntonio Apr 18 '13 at 10:57