Given vectors $x,y\in\mathbb{C}^n$, find all the eigenvectors and eigenvalues of the matrix $xy^\intercal$
I've already know that the eigenvalues are $0$ and $\mbox{trace}(xy^\intercal) = y^\intercal x$, but i don't know how to proceed for the eigenvectors asociated to $y^\intercal x$. For now i have
\begin{align} xy^\intercal v = (y^\intercal x)v \iff \begin{pmatrix}x_1y_1 -y^\intercal x &x_1y_2&\cdots&x_1y_n\\x_2y_1 & x_2y_2-y^\intercal x &\cdots&x_2y_n\\\vdots&&\ddots&\vdots\\x_ny_1&\cdots& & x_ny_n-y^\intercal x\end{pmatrix}v = \mathbf{0} \end{align}
Thanks in advance.