Assume $V$ is a countable state space and $L:V^2 \to \mathbb R$ the infinitesimal generator, and $\mu$ the initial distribution. Moreover, $(X_t)_{t \ge 0}$ is the associated continuous Markov chain on the probability space $(\Omega, \mathcal{G}, \mathbb{P})$. Given $\omega \in \Omega$, we define a sequence of random jump times $(\sigma_n)$ recursively as follows:
First, let $\sigma_0 := 0$. Second, let $i := X_{\sigma_n} (\omega) \in V$ and $L(i) := - L(i,i)$. Notice that $X_{\sigma_n} (\omega) := X_{\sigma_n (\omega)} (\omega)$. Then the time until transition out of state $i$ is $\sigma_{n+1} -\sigma_{n} \sim \operatorname{Exp}(L(i))$.
If $L(i) = 0$, then $\sigma_{n+1} -\sigma_{n} = +\infty$ a.s. Hence, $\sigma_{n+1} = +\infty$ a.s. and thus $i$ is an absorbing state. It follows that $X_t (\omega) = i$ for all $t \in[ \sigma_n (\omega), +\infty)$ and that $\sigma_{m} = +\infty$ a.s. for all $m \ge n+1$.
If $L(i) > 0$, then $i$ is not an absorbing state. It follows that $X_t (\omega) = i$ for all $t \in [\sigma_n (\omega),\sigma_{n+1} (\omega))$. In this case, the chain jumps to a new state, i.e., $X_{\sigma_{n+1}} (\omega) \neq i$.
Let $\sigma = \lim_{n \to \infty} \sigma_n$. If $\sigma (\omega) = +\infty$, then we know $X_t$ for all $t \ge 0$.
IMHO, $(V,L,\mu)$ completely determines $(X_t)_{t \ge 0}$.
In case $\sigma (\omega) < \infty$, how to recover $X_t(\omega)$ for $t \ge \sigma (\omega)$?