Given : $f=X^3+2X+1 \in \mathbb Z_3[X]$
I have that deg $f$ = $3$ and it is irreducible in $\mathbb Z_3$ as $f$ has no roots in $\mathbb Z_3$:
$f(0)=1, f(1)=1, f(2)=1$ in $\mathbb Z_3$:
My Question: Let $α = X + (f) \in \mathbb Z_3[X]/(f)$
It follows that $f(α) = 0$ and $F_{27}$ (the field with $27$ elements) is given by $F_{27} = \mathbb Z_3[X]/(f) = \mathbb Z_3(α) =\{\lambda_0 + \lambda_1α + \lambda_2α^2 : \lambda_0,\lambda_1,\lambda_2 \in \mathbb Z_3\}$.
Find $(1 + 2α)^{−1}$ in $F_{27}$. Express your answer in the form $\lambda_0 + \lambda_1α + \lambda_2α^2, \lambda_0,\lambda_1,\lambda_2 \in \mathbb Z_3$.
Let $(1 + 2α)^{−1} = \lambda_0 + \lambda_1α + \lambda_2α^2 \in \mathbb Z_3(\alpha)$. Then $1=(\lambda_0 + \lambda_1α + \lambda_2α^2)(1 + 2α)= \lambda_0 + \lambda_1α + \lambda_2α^2 +2\lambda_0α + 2\lambda_1α^2+2\lambda_2α^3$
But we have $α^3+2α+1=0$, hence $α^3=-2α-1=2α+1$ and $α^4=αα^3=α(2α+1)=(2α^2+α)$.
$F_{27}^\times$ is a group under multiplication which has $26$ elements
By Lagrange's Theorem:
$(1+2α)^{26}=1$ => $(1+2α)(1+2α)^{25}=1$
$(1+2α)^{-1}=(1+2α)^{25}$
$α^4α^4α^4α^4α^4α^3α^3=1=α^{26}=(1+2α)^2(2α^2+α)^4$
Hence: $(1+2α)^{-1}=(1+2α)(2α^2+α)^4$
Does this sufficiently Express my answer in the form $\lambda_0 + \lambda_1α + \lambda_2α^2, \lambda_0,\lambda_1,\lambda_2 \in \mathbb Z_3$ or am I making an error with this method?
Or should I multiply the entire expression out and taking the modulus of it I obtain that:
$(1+2α)^{-1}=α^2+2α$, i.e $\lambda_2 = 1$ and $\lambda_1=2$ and $\lambda_0=0$