1

Let $(x_n)_{n\in\mathbb N}\subseteq[-\infty,\infty)$. What's the easiest way to show that Show that $\limsup_{n\to\infty}\frac{x_{n+1}-x_1}n=\limsup_{n\to\infty}\frac{x_n}n$?

Clearly, since $x_1/n\to0$, $\limsup_{n\to\infty}\frac{x_{n+1}-x_1}n=\limsup_{n\to\infty}\frac{x_{n+1}}n$, but how do we see that the latter is equal to $\limsup_{n\to\infty}\frac{x_n}n=\inf_{n\in\mathbb N}\sup_{k\ge n}\frac{x_n}n$?

0xbadf00d
  • 13,422

1 Answers1

1

Note that $\lim\sup \frac{x_{n+1}}{n}=\lim\sup \frac{n+1}{n}\frac{x_{n+1}}{n+1}$. The first fraction of the RHS obviously goes to 1.

Then use this: limsup of the product of two sequences, of which one converges.

Dasherman
  • 4,206