Let $(x_n)_{n\in\mathbb N}\subseteq[-\infty,\infty)$. What's the easiest way to show that Show that $\limsup_{n\to\infty}\frac{x_{n+1}-x_1}n=\limsup_{n\to\infty}\frac{x_n}n$?
Clearly, since $x_1/n\to0$, $\limsup_{n\to\infty}\frac{x_{n+1}-x_1}n=\limsup_{n\to\infty}\frac{x_{n+1}}n$, but how do we see that the latter is equal to $\limsup_{n\to\infty}\frac{x_n}n=\inf_{n\in\mathbb N}\sup_{k\ge n}\frac{x_n}n$?