-1

Let $f: X \xrightarrow{} Y $and $A,B \subseteq Y. $ Show that if $A \subseteq B, $ then $f^{-1}(A) \subseteq f^{-1}(B)$

I'm having a tough time getting started with this one so if someone could push me in the right direction, I'd greatly appreciate it.

Arnaud D.
  • 20,884
LoneF0X
  • 39
  • Welcome to Mathematics Stack Exchange. You want to show that if $x\in f^{-1}(A) $ then $x\in f^{-1}(B)$. So assume $x\in f^{-1}(A)$. That means $f(x)\in A$. Since $A\subseteq B\dots$ – J. W. Tanner Apr 26 '20 at 22:46

2 Answers2

2

Hint: $$x \in f^{-1}(A) \iff f(x) \in A.$$

Sahiba Arora
  • 10,847
2

$$x \in f^{-1}(A) \iff f(x) \in A \implies f(x) \in A\subseteq B \implies f(x) \in B \iff x \in f^{-1}(B).$$ Hence $f^{-1}(A) \subseteq f^{-1}(B)$. Generally $f^{-1}$ respects set operation.

Mark
  • 649