If $x\ne0$, we have\begin{align}\lim_{n+\infty}\frac{\left|\frac{(2(n+1))!x^{n+1}}{2^{2(n+1)}((n+1)!)^2}\right|}{\left|\frac{(2n)!x^n}{2^{2n}(n!)^2}\right|}&=\lim_{n+\infty}\frac{(2n+2)(2n+1)}{4(n+1)^2}|x|\\&=|x|\end{align}and therefore the series converges absolutely if $|x|<1$ and diverges if $|x|>1$.
The sequence $\left(\frac{(2n)!}{2^{2n}(n!)^2}\right)_{n\in\Bbb N}$ decreases because, by the computation made above, if you divide the $(n+1)$th term by the $n$th, you get$$\frac{(2n+2)(2n+1)}{4(n+1)^2}=\frac{2n+1}{2n+2}<1.$$Also, it follows from the equality of the previous line that$$2^{2n}(n!)^2=\prod_{j=1}^n\frac{2j-1}{2j}.\tag1$$Now, note that$$\left(\frac{2j-1}{2j}\right)^2<\frac j{j+1},$$since this means that $4j^3-3j+1<4j^3$; in other words,$$\frac{2j-1}{2j}<\sqrt{\frac j{j+1}}.\tag2$$But then it follows from $(1)$ and $(2)$ that$$\frac{(2n)!}{2^{2n}(n!)^2}<\prod_{j=1}^n\sqrt{\frac j{j+1}}=\sqrt{\frac1{n+1}},$$and so, by the squeeze theorem, $\lim_{n\to\infty}\frac{(2n)!}{2^{2n}(n!)^2}=0$. Since it decreases and its limit is $0$, it follows from the Leibniz test that your series converges when $x=-1$.
But it diverges when $x=1$. You will find a proof here.