0

Evaluate the following surface integral $I$ $$ \begin{aligned} &I=\iint\limits_S f(x;y;z)\ dS\ \ \text{where}\\ &\text{$S$ is an ellipsoid}\ \ \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\ \ \text{and}\ \ f=\sqrt{\frac{x^2}{a^4}+\frac{y^2}{b^4}+\frac{z^2}{c^4}} \end{aligned} $$

I used a substitution for $x, y$ and $z$. $$ \begin{aligned} \begin{cases} x=a\sin\theta\cos\phi\\ y=b\sin\theta\sin\phi\\ z=c\cos\theta \end{cases},\ \ \ 0\leqslant\theta\leqslant\pi,\ \ 0\leqslant\phi<2\pi \end{aligned} $$ Then, I tried to calculate $dS$. $$ \begin{aligned} &r=r(x,y,z),\ \ dS=\sqrt{|G|}\ d\phi d\theta,\ \ \text{where $G$ is a Gramian matrix}\\ &G=\begin{pmatrix} (r'_\phi,r'_\phi) & (r'_\phi,r'_\theta)\\ (r'_\theta,r'_\phi) & (r'_\theta,r'_\theta) \end{pmatrix} \end{aligned} $$ However, the calculations of $G$ became very tough, and now I doubt that it was the right way to solve this problem.
So, the question is how should I approach this problem?

Bonrey
  • 1,294

0 Answers0